This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674
Crystal structures of complexes of 3,5,6-tris(2-pyridyl)-1,2,4-triazine: $\left[\mathrm{Pb}(\mathrm{TPT})\left(\mathrm{NO}_{3}\right)_{2}\right]<s u b>n</$ sub $>$ and $\left[\mathrm{Pb}(\mathrm{TPT})_{2}\left(\mathrm{ClO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ Farzin Marandia; Hoong-Kun Fun ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Science, Payame Noor University (PNU), Zanjan, Iran ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang, Malaysia

To cite this Article Marandi, Farzin and Fun, Hoong-Kun(2009) 'Crystal structures of complexes of 3,5,6-tris(2-pyridyl)-1,2,4-triazine: $\left[\mathrm{Pb}(\mathrm{TPT})\left(\mathrm{NO}_{3}\right)_{2}\right]<s u b>n</ s u b>$ and $\left[\mathrm{Pb}\left(\mathrm{TPT}_{2}\right)_{2}\left(\mathrm{ClO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{\prime}$, Journal of Coordination Chemistry, 62: 12, 1972-1979
To link to this Article: DOI: 10.1080/00958970902741277
URL: http://dx.doi.org/10.1080/00958970902741277

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Crystal structures of complexes of 3,5,6-tris(2-pyridyl)-1,2,4-triazine: $\left[\mathrm{Pb}(\mathrm{TPT})\left(\mathrm{NO}_{3}\right)_{2}\right]_{n}$ and $\left[\mathrm{Pb}(\mathrm{TPT})_{2}\left(\mathrm{ClO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$

FARZIN MARANDI* \dagger and HOONG-KUN FUN \ddagger
\dagger Department of Science, Payame Noor University (PNU), Zanjan, Iran
\ddagger X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

(Received 31 August 2008; in final form 2 October 2008)

Abstract

Two new $\mathrm{Pb}(\mathrm{II})$ complexes, $\left[\mathrm{Pb}(\mathrm{TPT})\left(\mathrm{NO}_{3}\right)_{2}\right]_{n}$ (1) and $\left[\mathrm{Pb}(\mathrm{TPT})_{2}\left(\mathrm{ClO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (2) (TPT is the abbreviation of 3,5,6-tris(2-pyridyl)-1,2,4-triazine), have been synthesized and characterized by single-crystal X-ray diffraction. Lead(II) in the compounds of $\mathbf{1}$ and 2 is nine coordinate (rare mode), $\mathrm{PbN}_{3} \mathrm{O}_{6}$ and $\mathrm{PbN}_{6} \mathrm{O}_{3}$, respectively. Both have hemidirected coordination geometries. The supramolecular features in these complexes are guided/ controlled by hydrogen bonding and weak directional intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\pi \cdots \pi$ interactions. The thermal stabilities of $\mathbf{1}$ and $\mathbf{2}$ were investigated by thermogravimetric measurements.

Keywords: Lead(II); 1,2,4-Triazine; Crystal structure

1. Introduction

Supramolecular structures have manifold coordination modes, intriguing architecture, and porosity; and physicochemical characteristics and potential applications as functional materials [1]. Self-assembly has the possibility of rationally designing and synthesizing supramolecular architectures based on covalent or supramolecular contacts $[1 \mathrm{~g}]$. In crystal engineering, synergistic effects between intermolecular noncovalent interactions must be regarded as a single inter-related entity [2]. Creation of high-dimensional supramolecular architectures can be accomplished by employing coordination bonds, hydrogen bonds, aromatic $\pi \cdots \pi$ stacking interactions, etc. The 3,5,6-tris(2-pyridyl)-1,2,4-triazine (TPT) ligand may also be a very good candidate because of its aromatic rings and ability for forming intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\pi \cdots \pi$ weak interactions with neighboring ligands.

[^0]
2. Experimental

2.1. Preparation of $\left[\mathrm{Pb}(\mathrm{TPT})\left(\mathrm{NO}_{3}\right)_{2}\right]_{n}$ (1) and $\left[\mathrm{Pb}(\mathrm{TPT})_{2}\left(\mathrm{ClO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (2)

The titled complexes were prepared by the branched tube method: TPT $(0.312 \mathrm{~g}, 1 \mathrm{mmol})$ was placed in one arm of the branched tube and lead(II) nitrate $(0.331 \mathrm{~g}, 1 \mathrm{mmol})$ or lead(II) perchlorate trihydrate $(0.230 \mathrm{~g}, 0.5 \mathrm{mmol})$ in the other one. Methanol was then carefully added to fill both arms, the tube sealed and the ligandcontaining arm immersed in a bath at $60^{\circ} \mathrm{C}$, while the other was left at ambient temperature. After 4 days, crystals deposited in the arm at ambient temperature were filtered off, washed with acetone and ether, and dried in air. For $1 \mathrm{~m} . \mathrm{p} .: 260^{\circ} \mathrm{C}$, yield: 40% and for $2 \mathrm{~m} . \mathrm{p} .: 222^{\circ} \mathrm{C}$, yield: 50%. Elemental analysis: Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~Pb}$ 1: $\mathrm{C}: 33.56, \mathrm{H}: 1.86, \mathrm{~N}: 17.40$, found: $\mathrm{C}: 33.40, \mathrm{H}: 1.70, \mathrm{~N}: 17.00 \%$ and for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{10} \mathrm{~Pb} 2: \mathrm{C}: 40.49, \mathrm{H}: 3.15, \mathrm{~N}: 15.75$, found: $\mathrm{C}: 40.40, \mathrm{H}: 2.90, \mathrm{~N}: 15.40 \%$.

2.2. Crystallography

Crystallographic data were collected at $100.0(1) \mathrm{K}$ with the Oxford Cyrosystem Cobra low-temperature attachment. The data were collected using a Bruker Apex2 CCD diffractometer with a graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation at a detector distance of 5 cm with APEX2 software [3]. The collected data were reduced using SAINT, and the empirical absorption corrections were performed using SADABS [3]. The structures were solved by direct methods and refined by least-squares using the SHELXTL software package [4]. Materials for publication were prepared using SHELXTL [4] and ORTEPIII [5].

3. Results and discussion

Determination of the structures of $\left[\mathrm{Pb}(\mathrm{TPT})\left(\mathrm{NO}_{3}\right)_{2}\right]_{n}(\mathbf{1})$ and $\left[\mathrm{Pb}(\mathrm{TPT})_{2}\left(\mathrm{ClO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$. $\mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (2) by X-ray crystallography (table 1) showed a 1D coordination polymer and monomer, respectively. Similar to the recent lead(II) complex [6], coordination of lead(II) is nine in 1, with each lead chelated by three nitrogens of "TPT" with $\mathrm{Pb}-\mathrm{N}$ distances of $2.549(2), 2.654(2)$, and $2.692(2) \AA$, and six oxygens of nitrates with $\mathrm{Pb}-\mathrm{O}$ distance of 2.489(2), 2.651(2), 2.774(2), 2.817(2), 2.826(3), and $2.982(2) \AA$ (figure 1, table 2). In the present zig-zag 1D coordination polymer only one nitrate does not bridge between two lead centers. It rather chelates to just one lead center (figure 1) [7].

The coordination number of lead(II) is nine in $\mathbf{2}$ (figure 2) and each lead is chelated by six nitrogens of "TPT" with $\mathrm{Pb}-\mathrm{N}$ distances of 2.573(4), 2.663(4), 2.683(4), 2.710(4), 2.763(5), and 2.788(5) \AA, two oxygens of perchlorate with a $\mathrm{Pb}-\mathrm{O}$ distance of 2.995(4) and $3.045(4) \AA$, and one water with a $\mathrm{Pb}-\mathrm{OW}$ distance of $2.709(4) \AA$ (table 2). The other, disordered water and disordered perchlorate do not participate in coordination. Two $\left[\mathrm{Pb}(\mathrm{TPT})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$ are bridged into a centro-symmetric dimer by strong hydrogen bonding between water and nitrogens of triazine

Table 1. Crystal data and structure refinement for $\mathbf{1}$ and $\mathbf{2}$.

Identification code	1	2
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~Pb}$	$\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{10} \mathrm{~Pb}$
Formula weight	643.55	1066.79
Temperature (K)	100.0(1)	100.0(1)
Wavelength (A)	0.71073	0.71073
Crystal system	Orthorhombic	Monoclinic
Space group	Pca21	P21/n
Unit cell dimensions ($\mathrm{A},{ }^{\circ}$)		
a	17.3753(4)	10.0992(1)
b	15.5977(3)	14.1018(2)
c	7.2248(2)	27.8916(3)
α	90.00	90.00
β	90.00	90.411(1)
γ	90.00	90.00
Volume	1958.03(8)	3972.13(8)
Z	4	4
Density (Calcd)	2.183	1.784
Absorption coefficient	8.675	4.456
$F(000)$	1224	2096
Crystal size (mm^{3})	$0.51 \times 0.16 \times 0.14$	$0.23 \times 0.17 \times 0.07$
θ range for data collection (${ }^{\circ}$)	$2.34-40.00$	2.48-30.14
Index ranges	$-30 \leq h \leq 31$	$-12 \leq h \leq 14$
	$-28 \leq k \leq 27$	$-19 \leq k \leq 19$
	$-12 \leq l \leq 12$	$-39 \leq l \leq 36$
Reflections collected	77490	95479
Independent reflections	$9797[R(\mathrm{int})=0.0479]$	$11713[R(\mathrm{int})=0.0666]$
Completeness to θ	99.5	98.8
Full-matrix least squares on F^{2}	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data/restraints/parameters	11892/1/298	11713/0/578
Maximum and minimum transmission	0.2982-0.0515	0.7339-0.4207
Goodness-of-fit on F^{2}	1.024	1.089
Final $R[I>2 \sigma(I)]$	$R_{\mathrm{I}}=0.0298$	$R_{1}=0.0471$
	$w R_{2}=0.0599$	$w R_{2}=0.1067$
R indices (all data)	$R_{1}=0.0428$	$R_{1}=0.0834$
	$w R_{2}=0.0639$	$w R_{2}=0.1262$
Largest difference peak, hole (e \AA^{-3})	$3.120,-0.689$	2.044, -1.193

(N4…O1W, O1W \cdots O2W, and O2W \cdots N6 with distance of 3.036(6), 2.669(7), and $2.796(8) \AA$, respectively) (figure 3) [8].

The arrangement of these ligands suggests a gap or hole [9] around $\mathrm{Pb}^{\mathrm{II}}$ (in $\mathbf{1}, \mathrm{O} 4^{\mathrm{i}}-$ $\mathrm{Pb} 1-\mathrm{N} 1$ angle is $143.63(7)^{\circ}$ and in $2 \mathrm{O}^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 1 \mathrm{~W}$ angle is $\left.108.33(1)^{\circ}\right)$, occupied possibly by a stereo-active lone pair of electrons on lead(II). Observed shortening of the $\mathrm{Pb}-\mathrm{O}$ and $\mathrm{Pb}-\mathrm{N}$ bonds on the side of $\mathrm{Pb}(\mathrm{II})$ ion opposite to the putative lone pair (in $1,2.489$ (2) \AA compared with $2.982(2) \AA$ adjacent to the lone pair and in 2, $2.573(4) \AA$ compared with $3.045(4) \AA$ adjacent to the lone pair) supports this interpretation [10].

An interesting feature in $\mathbf{1}$ is $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}$ interactions $\left\{\left(\mathrm{O} 3 \cdots \mathrm{H} 13 \mathrm{a}^{\mathrm{i}}-\mathrm{C} 13 \mathrm{a}^{\mathrm{i}}\right.\right.$ with distance of $2.481 \AA\left(\mathrm{H}-\mathrm{C} \cdots \mathrm{O}=3.314(2) \AA\right.$ and $\left.\angle \mathrm{O} \cdots \mathrm{H}-\mathrm{C}=149.28^{\circ}\right), \mathrm{O} 2 \cdots \mathrm{H} 17 \mathrm{a}^{\mathrm{i}}-$ $\mathrm{C} 17 \mathrm{a}^{\mathrm{i}}$ with distances of $2.441 \AA\left(\mathrm{H}-\mathrm{C} \cdots \mathrm{O}=3.343(1) \AA\right.$ and $\left.\angle \mathrm{O} \cdots \mathrm{H}-\mathrm{C}=163.19^{\circ}\right)$ and $\mathrm{O} 4 \cdots \mathrm{H} 13 \mathrm{a}^{\mathrm{i}}-\mathrm{C} 13 \mathrm{a}^{\mathrm{i}}$ with distances of 2.493(2) $\AA(\mathrm{H}-\mathrm{C} \cdots \mathrm{O}=3.040(2) \AA$ and $\angle \mathrm{O} \cdots \mathrm{H}-$ $\left.\left.\mathrm{C}=117.78^{\circ}\right)\right\}$, values that suggest relatively strong interactions within this class of weak contacts [11]. The packing diagram exhibits interesting self-assembled structural topologies via two different $\pi-\pi$ stackings (face-to-face with distance of 3.357 and edge-to-edge with distance of $3.226 \AA$, appreciably shorter than the normal

Figure 1. ORTEP diagram of $\mathbf{1}$ (hydrogen atoms deleted for clarity).
intermolecular interactions) [12]. These weak interactions lead to formation of a 3D framework (figure 4).

The packing diagram of $\mathbf{2}$ exhibits a 3D supramolecular architecture arising from lone pair activity, $\pi-\pi$ stacking and weak $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}$ interaction. It exhibits two different $\pi-\pi$ stacking (face-to-face with a distance of $3.368 \AA$ and slipped face-to-face with a distance of $3.291 \AA$), appreciably shorter than the normal $\pi-\pi$ stacking [10]. The 3D framework is stabilized by weak non-covalent $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}$ interaction [13] $\left\{\left(\mathrm{O} 6 \mathrm{a} \cdots \mathrm{H} 27 \mathrm{a}^{\mathrm{iii}}-\mathrm{C} 27^{7 i i}\right.\right.$ (iii: $\left.x+1 / 2,-y+1 / 2, z+1 / 2\right)$ with distance of $2.320 \AA$ $\left(\mathrm{H}-\mathrm{C} \cdots \mathrm{O}=2.988(2) \AA\right.$ and $\left.\angle \mathrm{O} \cdots \mathrm{H}-\mathrm{C}=128.36^{\circ}\right), \mathrm{O} 8 \mathrm{a} \cdots \mathrm{H} 3 \mathrm{a}^{\mathrm{ii}}-\mathrm{C} 3^{\mathrm{ii}}$ (ii: $-x,-y,-z$) with distance of $2.333 \AA\left(\mathrm{H}-\mathrm{C} \cdots \mathrm{O}=3.200(2) \AA\right.$ and $\left.\angle \mathrm{O} \cdots \mathrm{H}-\mathrm{C}=155.04^{\circ}\right)$ and $\mathrm{O} 5 \cdots \mathrm{H} 19 \mathrm{a}-\mathrm{C} 19$ with distances of $2.430 \AA(\mathrm{H}-\mathrm{C} \cdots \mathrm{O}=3.222(2) \AA$ and $\angle \mathrm{O} \cdots \mathrm{H}-\mathrm{C}=143.02^{\circ}$) $\}$ (figure 5).

To investigate the stability of these frameworks, thermogravimetric analysis (TGA) was carried out on crystalline samples. For 2, an initial weight loss of 1.7% (below $120^{\circ} \mathrm{C}$) is attributed to loss of the water molecules (Calcd 1.5%). The results show that

Table 2. Selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$ and $\mathbf{2}$.

1		2	
$\mathrm{Pb} 1-\mathrm{O} 2$	2.489(2)	Pb1-N1	2.573(4)
$\mathrm{Pb} 1-\mathrm{N} 3$	2.549(2)	Pb1-N7	2.663(4)
$\mathrm{Pb} 1-\mathrm{O} 4{ }^{\text {i }}$	2.651(2)	$\mathrm{Pb} 1-\mathrm{N} 8$	2.683(4)
$\mathrm{Pb} 1-\mathrm{N} 2$	2.654(2)	Pb1-O1W	2.709(4)
$\mathrm{Pb} 1-\mathrm{N} 1$	2.692(2)	$\mathrm{Pb} 1-\mathrm{N} 2$	2.710 (4)
$\mathrm{Pb} 1-\mathrm{O} 5$	2.774(2)	Pb1-N9	2.763 (5)
Pb1-O4	2.817(2)	Pb1-N3	$2.788(5)$
$\mathrm{Pb} 1-\mathrm{O} 1$	2.826 (3)	$\mathrm{Pb} 1-\mathrm{O} 4{ }^{\text {i }}$	2.995 (4)
$\mathrm{Pb} 1-\mathrm{O}^{\text {i }}$	2.982(2)	$\mathrm{Pb} 1-\mathrm{O}^{\text {i }}$	3.045(4)
$\mathrm{Pb} 1 \cdots \mathrm{O} 3$	3.545 (3)		
		$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 8$	82.92(1)
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 4{ }^{\text {i }}$	74.32(7)	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 1 \mathrm{~W}$	77.08(1)
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{N} 2$	68.17(7)	N7-Pb1-O1W	142.64(1)
$\mathrm{O} 4{ }^{\mathrm{i}} \mathrm{Pb} 1-\mathrm{N} 2$	129.19(7)	N8-Pb1-O1W	134.08(1)
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{N}$	180.39(7)	N7-Pb1-N2	82.15(1)
$\mathrm{O} 4{ }^{\mathrm{i}} \mathrm{Pb} 1-\mathrm{N} 1$	143.63(7)	$\mathrm{N} 8-\mathrm{Pb} 1-\mathrm{N} 2$	136.16(1)
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{N} 5$	138.84(9)	O1W-Pb1-N2	65.74(1)
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{N} 4$	118.28(8)	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 9$	84.22(1)
		O1W-Pb1-N9	77.16(1)
		N2-Pb1-N9	133.95(1)
		N7-Pb1-N3	96.08(2)
		$\mathrm{N} 8-\mathrm{Pb} 1-\mathrm{N} 3$	140.95(2)
		O1W-Pb1-N3	83.87(2)

i: $-x,-y, z+1 / 2$; ii: $-x+1 / 2, y+1 / 2,-z+1 / 2$.

Figure 2. ORTEP diagram of $\mathbf{2}$ (hydrogen and disorder atoms deleted for clarity).

Figure 3. Schematic role of hydrogen bonding in forming dinuclear compound (perchlorate anions deleted for clarity).

Figure 4. A fragment of 3D framework of $\mathbf{1}$.

Figure 5. A fragment of 3 D framework of $\mathbf{2}$.
both compounds almost have similar thermal behavior. The TGA curves of $\mathbf{1}$ and $\mathbf{2}$ show that thermal decomposition involves three exothermic processes. Exothermic weight loss occurred between 280 and $600^{\circ} \mathrm{C}$ (corresponding to loss of "TPT" and decomposition of counter anions). A gray amorphous residue of PbO (observed: 32.32% and 19.5%; Calcd 34.1% and 20.0% for $\mathbf{1}$ and $\mathbf{2}$, respectively) remained. The exothermic DTA peaks of thermal decomposition are due to breaking of these directed intermolecular interactions involved in packing of structures.

Supplementary material

Full crystallographic data, in CIF format, may be obtained from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, Fax: +44 1223336033 , by citing deposition numbers 692964 for $\mathbf{1}$ and 692965 for 2.

Acknowledgments

Support of this investigation by Iran National Science Foundation, INSF (project number $86053 / 19$) is gratefully acknowledged by F. Marandi. H.K. Fun would like to thank the Malaysian Government and Universiti Sains Malaysia for the University Golden Goose Fund (Grant No. 1001/PIZIK/811012).

References

[1] (a) X.-W. Wang, Y.-R. Dong, Y.-Q. Zheng, J.-Z. Chen. Cryst. Growth Des., 7, 613 (2007); (b) H. Park, J.F. Britten, U. Mueller, J.Y. Lee, J. Li, J.B. Parise. Chem. Mater., 19, 1302 (2007); (c) D.M. Shin, I.S. Lee, Y.K. Chung. Cryst. Growth Des., 6, 1509 (2006); (d) J.A. Rood, B.C. Noll, K.W. Henderson. Inorg. Chem., 45, 5521 (2006); (e) C.-B. Liu, M.-X. Yu, X.-J. Zheng, L.-P. Jin, S. Gao, S.-Z. Lu. Inorg. Chim. Acta, 358, 2687 (2005); (f) Y.V. Mironov, N.G. Naumov, K.A. Brylev, O.A. Efremova, V.E. Fedorov, K. Hegetschweiler. Angew. Chem. Int. Ed., 43, 1297 (2004); (g) C.R. Perez, P.L. Luis, M.H. Molina, M.M. Laz, F.S. Delgado, P. Gili, M. Julve. Eur. J. Inorg. Chem., 3873 (2004).
[2] H. Casellas, C. Massera, P. Gamez, A.M.M. Lanfredi, J. Reedijk. Eur. J. Inorg. Chem., 2902 (2005).
[3] Bruker. APEX2 Version 1.27, SAINT and SADABS, Bruker AXS, Madison, WI, USA (2005).
[4] G.M. Sheldrick. SHELXTL Version 5.1, Bruker AXS Inc, Madison, WI, USA (1998).
[5] L.J. Farrugia. J. Appl. Crystallogr., 30, 565 (1997).
[6] A. Morsali, A. Mahjoub. Inorg. Chem. Commun., 7, 915 (2004).
[7] (a) D.-Q. Li, X. Liu, J. Zhou. Inorg. Chem. Commun., 11, 367 (2008); (b) A.A. Soudi, F. Marandi, A. Morsali, L.-G. Zhu. Inorg. Chem. Commun., 8, 773 (2005).
[8] (a) M.S. Deshpande, A.S. Kumbhar, V.G. Puranik. Cryst. Growth Des., 8, 1952 (2008); (b) C. Jia, J. Liang, J. Yang, X. Huang, X.-J. Yang, B. Wu, N. Tang. Z. Anorg. Allg. Chem., 634, 1210 (2008).
[9] L. Shimoni-Livny, J.P. Glusker, C.W. Brock. Inorg. Chem., 37, 1853 (1998).
[10] R.D. Hancock, M.S. Shaikjee, S.M. Dobson, J.C.A. Boeyens. Inorg. Chim. Acta, 154, 229 (1998).
[11] (a) F. Marandi, N. Asghari-Lalami, M. Ghorbanloo, P. McArdle. J. Coord. Chem., 61, 1545 (2008); (b) A.R. Choudhury, R.G. Bhat, T.N.G. Row, S. Chandrasekaran. Cryst. Growth Des., 7, 844 (2007).
[12] (a) F. Marandi, H.K. Fun. Z. Anorg. Allg. Chem., 634, 1123 (2008); (b) T. Dorn, C. Janiak, K. AbuShandi. Cryst Eng Comm., 7, 633 (2005); (c) K. Abu-Shandi, H. Winkler, H. Paulsen, R. Glaum, B. Wu, C. Janiak. Z. Anorg. Allg. Chem., 631, 2705 (2005); (d) S. Banerjee, A. Ghosh, B. Wu, P.-G. Lassahn, C. Janiak. Polyhedron, 24, 593 (2005); (e) S. Banerjee, B. Wu, P.-G. Lassahn, C. Janiak, A. Ghosh. Inorg. Chim. Acta, 358, 535 (2005).
[13] R. Custelcean, D.-E. Jiang, B.P. Hay, W. Luo, B. Gu. Cryst. Growth Des., 8, 1909 (2008).

[^0]: *Corresponding author. Email: fmarandi2004@yahoo.com

